
Part 1 – Newtonian Gravity 

Newton’s analysis of gravity provided the impetus that kick-started the modern scientific age. Yet, 350 years 

later, it is still widely misunderstood. Students are often taught that there is no gravity in space, and this is 

why astronauts feel weightless. Clearly it is absurd to suggest that there is no gravity in space. The moon 

remains in orbit. The whole solar system is bound together by gravity. Indeed the billions of stars that 

straddle the Milky Way are whirling around in a gravitational embrace that forms our galaxy. Gravity 

diminishes with distance but never completely diminishes to zero. The galaxy, which has a diameter of 

100,000 light years, is held together by the gravitational attraction of the stars and gas that it contains. 

So why do astronauts feel weightless, while the rest of us, who are bound to the Earth, are weighed down 

by more than our responsibilities?  The first thing to note is that gravity affects all objects in the same way – 

Galileo told us that long ago (more on that later). We know that when an object is acted on by a force, its 

velocity changes; it accelerates. The force of gravity is special because it produces the same acceleration on 

all objects. Irrespective of size, shape or mass, be they atoms, footballs, chairs, people, elephants or 

spaceships, all objects fall in the same way under the force of gravity. 

As the mass of an object increases, it becomes more and more difficult to change its motion. We express 

this observation by saying that the more massive an object the more inertia it has. According to Newton’s 

theory, gravity acts on the mass of an object. The size of the gravitational force felt by an object depends on 

its mass – the greater the mass, the greater the force. However, it is also true that the greater the mass, the 

greater the inertia, which means that the greater the mass of an object the more difficult it is to change its 

motion. It is a unique feature of gravity that mass plays this dual role. It increases the size of the force, but it 

simultaneously decreases the size of the response to the force. The result is a perfect cancellation of these 

two effects. So the acceleration of an object due to the force of gravity is independent of its mass. In other 

words, all objects undergo the same acceleration due to gravity, whatever their mass. This was first 

demonstrated by Galileo about 400 years ago. Earth dwellers often find this quite hard to accept. In fact 

one of the greatest minds produced by ancient Greece, Aristotle, concluded from his observations that 

more massive things should fall faster than less massive ones. Aristotle’s view held sway for about two 

thousand years until Galileo proved him wrong. On this question the Apollo astronauts felt the need to 

offer an explicit demonstration. After the completion of a moon walk, the commander of Apollo 15 David 

Scott, held out a geological hammer and a feather and dropped them simultaneously in front of a video 

camera. In the absence of any atmosphere, the hammer and the feather fell without any air resistance, the 

only force acting on them was the moon’s gravity and, sure enough, both fell with the same acceleration 

and reached the moon’s surface at the same time. 

There is nothing special about gravity on the moon. What is special is that the moon has no atmosphere. As 

there is no air resistance, the only force acting on us would be gravity. 
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Now we need to plant our feet back firmly on the ground. If, we cannot feel the force of gravity, what is it 

we feel when we are on Earth? When we are on the ground gravity is not the only force acting on us. We 

can be sure of this because forces produce accelerations. Fall off a ladder and you will be accelerated, 

courtesy of gravity, and then come to a thumping halt when you hit the ground. Once on the ground the 

force of gravity is counteracted by electrical forces as the atoms of the ground are compressed and repel 

the atoms in our body. This is what we feel. 

However, this is not the whole of the story. If we had the consistency of a jellyfish, then our bodies would 

spread out like a pancake, with all parts in contact with the ground. Fortunately we have bones, muscles, 

tendons and ligaments that enable us to resist the pull of gravity. These components give our body 

structure and transmit forces throughout our bodies that balance all external forces. 

Q. If you jumped out of an aeroplane would you feel weightless?  

I have suggested that here on Earth we never feel the force of gravity (unless we fall, then we do). Our 

heads and our feet experience slightly a different force of gravity, because the strength of gravity 

diminishes with the square of the distance from the centre of the gravitating body, the Earth for us humans. 

But, the Earth’s gravity is so feeble that we will never notice the difference in the strength of gravity 

between our head and feet. 

When asked why objects and astronauts in spacecraft appear weightless, many people give these 

answers: 

1. There is no gravity in space and they do not weigh anything. 

2. Space is a vacuum and there is no gravity in a vacuum. 

оΦ ¢ƘŜ ŀǎǘǊƻƴŀǳǘǎ ŀǊŜ ǘƻƻ ŦŀǊ ŀǿŀȅ ŦǊƻƳ 9ŀǊǘƘΩǎ ǎǳǊŦŀŎŜ ǘƻ ōe subject to its gravitational pull. 

Which is the correct answer? 

 

The main thing to understand here is that there is gravity in space. This is a very common 

misconception. What keeps the Moon in its orbit around the Earth? Gravity. What keeps the 

Earth in orbit about the Sun? Gravity. What holds galaxies together? Gravity. 

Gravity is everywhere in space! 

If you built a tower on the Earth 370 km high, about as high as the Space Station’s orbit, the gravity on top 

of the tower would be almost as strong as if you were on the ground. See solution to problem 1. If you 

stepped off the top of the tower, you would drop to the Earth like the proverbial stone. (Of course, this does 

not account for the freezing temperatures that would ultimately cause your demise, or how no air or air 

pressure would kill you, or how dropping through the atmosphere would seriously damage a number of your 

body parts. And then that sudden stop would be bad, too.) 

So, why doesn’t the Space Station or satellites in orbit fall to the Earth, and why do the astronauts and 

objects inside the ISS or other spacecraft appear to be floating? 

Because of speed! 

The astronauts, the ISS itself and other objects in Earth orbit aren’t floating, they are actually falling. But they don’t 

fall to the Earth because of their huge orbital velocity. Instead, they fall around Earth. Objects in Earth orbit have to 

travel at least 28,160 km/hr. Since the astronauts have the same acceleration as the space station, they feel 

weightless. 
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There are times when we can be weightless — briefly — on Earth, when you are falling. Have you ever been on a 

roller coaster and just past the peak of a hill as the car starts to go down, your body lifts from the seat? If you were in 

an elevator a hundred stories high, and the cable broke, as the elevator fell, you would float inside the elevator car. 

Of course, in that case the ending would be rather disastrous. 

You have probably heard about the “Vomit Comet” — the 

KC 135 airplane that NASA uses to create short periods of 

weightlessness for astronaut training and to test out 

experiments or equipment in zero-G, as well as the 

commercial Zero-G flights where the plane flies in a 

parabola. When the plane goes over the top of the 

parabola and heads downward, a zero gravity 

environment is created as the plane falls. Luckily, the 

plane pulls out of the fall and levels off. 

Let’s go back to the tower. If instead of just stepping off 

the tower, you took a running leap, your forward energy 

would carry you away from the tower at the same time 

that gravity pulled you down. Instead of hitting the ground at the base of the tower, you would land a distance away. 

If you ran faster, you could jump further from the tower before you hit the ground. If you could run as fast as the ISS 

orbits the Earth, at 28,160 km/h, the arc of your jump would make a circle around the Earth. You would be in orbit 

and weightless. You would be falling without hitting the ground. Spacesuit and ample breathable air needed, 

however. 

And if you could run at about 40,555 km/h you would jump right past Earth and start orbiting the Sun. 

The International Space Station, the space shuttle, and satellites are designed to stay in orbit, neither falling to the 

ground nor shooting off into space. They orbit the Earth about every 90 minutes. 

So, when you are in orbit, 

you are in free fall, and 

are weightless. 

 

Calculate g at Earth’s 

surface and at 370 km 

high, the height of the 

International Space 

Station. 
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Motion and How things Move - Galileo Galilei 1564-1642 

Philosophy is written in this immense book that stands ever open before our eyes (I 

speak of the Universe), but it cannot be read unless we first learn the language in 

which it is written. It is written in mathematical language, and the characters are 

triangles, circles and other geometrical figures, without the means of which it is 

humanly impossible to understand a word; without these philosophy is a confused 

wandering in a dark labyrinth.  Galileo, The Assayer 1623. 

In 1602, while Kepler was looking up at the heavens and wrestling with the orbit of 

Mars, Galileo began a systematic investigation of motion (how things move) closer to home. Galileo rejected the 

traditional explanation of the world as given to us by Aristotle, some 2000 years earlier. Galileo believed that the 

universe operated along mathematical principles and could be revealed through measurement and experiment. Prior 

to Galileo, the world was the subject of philosophical and theological arguments made by scholars who rarely felt the 

need to check the assertions that they made. 

Galileo is said to have dropped a wooden ball and a cannon ball from the Leaning Tower of Pisa in order to 

demonstrate that they hit the ground together. We are not certain that Galileo actual performed this demonstration 

but what he definitely did was to construct ramps, down which he could roll smooth brass balls and carefully time 

how fast they rolled down the ramps. 

To measure time accurately he devised a water clock that allowed a steady trickle of water to flow. He would then 

collect and weigh the water in order to quantify the amount of time that had elapsed. Using this simple equipment 

Galileo showed that objects of any weight fell toward the Earth at the same rate – that they had a uniform 

acceleration. He surmised that if they fell in a vacuum, where there was no air resistance to slow some objects more 

than others, even a feather and a cannon ball would descend at the same rate and reach the ground at the same 

time. 

Mathematically, this is expressed as;    1)     v  ́ t     velocity is proportional to time 

2) d  ́t2   distance travelled is proportional to time squared 

Below are some of Galileo’s measured times and distances for the rolling ball as it progressed down the inclined 
plane. Galileo used a measuring unit called points, equal to approximately 1 mm. 
 
Time (equal intervals)  Distance (in points)   Distance divided by 33 

1    33     1.00 
2    130     3.94 
3    298     9.03 
4    526     15.94 
5    824     24.97 
6    1,192     36.12 
7    1,620     49.09 
8    2,104     63.76 

The last column we added to show the multiples of the initial distance. The idea is to try to intuit a pattern in the 
numbers, by dividing the initial distances by the first distance number (33) and seeing if the other numbers are 
multiples of it. It is apparent that, after dividing each distance by 33, the last column increases approximately as the 
square of the time. Indeed it does not take a great deal of rounding of this experimental data to make the 
relationship just that, as Galileo saw. The exact relationship is confirmed by many repeated observations. 

It can be expressed by a simple equation:  d  ́t2 
 
To make the equation exact we need to introduce the “proportionality constant” whose value determines the 
distance in the equation, in units of our choice. As we shall see, the constant is a constant of acceleration, the 

incremental addition to velocity in the response of the force inducing it. This turns out to be; d = ½  at2  
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To understand uniformly accelerated motion, we shall return to the 
man who articulated it in simple terms. In his Dialogs, Galileo 

reasoned that constant acceleration implied steady, incremental additions of velocity evenly in proportion to time. In 
other words, in uniformly accelerated motion, the velocity will be proportional to time, 

v ́  t 

The proportionality constant to convert the proportion v ́  t into an equation must be the amount by which increases 
in velocity occur steadily with time. This is the definition of constant acceleration. In a freely falling object, 
acceleration in falling due to the Earth’s gravitational field is known from experiment (and theory) to be 9.8 m/s per 
second.  Hence for such cases the equation may be written v = 9.8 t.  To make this clearer, suppose a rocket is 
boosting a probe into deep space at a constant acceleration of 10 m/s, every second. Constant acceleration means 
constant increase in velocity – in bundles of 10 m/s velocity in every new second. 
 
Time in seconds  Increments of velocity (m/s)  Total velocity (m/s) 

1    10     10 
2    10 + 10     20 
3    20 + 10     30 
4    30 + 10     40 
5    40 + 10     50 

Every second begins with the velocity the object had at the end of the previous 
second. The incremental addition to velocity in each second – the constant by 
which the time is multiplied – is 10, which is the probe’s constant acceleration. Where acceleration (again symbolized 

by a) is constant, the equation for velocity is;  v  =  at 
 

Experimenting with inclined planes 

Varying the angle of the slope and using two inclined planes lead Galileo do deep insights about mass and motion. 

Galileo observed that by using two slopes, one for the ball to roll down and one for the ball to roll up, that the ball 

would reach almost the same height that it had started at. 

It doesn’t quite get there because of friction, which 

takes away some of the ball’s energy. 

The shallower the slope, the greater the horizontal 

motion. 

Galileo reasoned that if there was no friction, when the 

ball reached the bottom of the slope it would continue 

to travel without requiring a force to propel it further. 

The ball has a special property called inertia which 

causes it to keep moving in the absence of 

any force. This is in contrast to Aristotle’s belief 

that objects did not move unless there was a force 

causing the motion. 

Galileo’s experiments with inclined planes 

provided the basis for Newton’s First Law of Motion, also called the Law of Inertia. 

Inertial mass 
The inertial mass of an object is its resistance to a force. Any time a force is applied to a body in order to change its 
motion (that is, produce an acceleration), the body opposes that change through its inertial mass. 
 
We should really write Newton’s Second Law as:  F = inertial mass × acceleration 
 

The greater the inertial mass, the harder it is to accelerate that mass for a given strength of force. 

The Meaning of Constant Acceleration 

Galileo showed that 

objects with different 

masses and compositions 

fell at exactly the same 

rate under gravity. 
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Newton's theory of Universal Gravitation 

The Moon orbits around the Earth. Since its size does not appear to change, its distance stays about the same, and 

hence its orbit must be close to a circle. To keep the Moon moving in that circle--rather than wandering off--the Earth 

must exert a pull on the Moon, and Newton named that pulling force gravity. 

Was that the same force which pulled all falling objects downward? 

Supposedly, the above question occurred to Newton when he saw an apple falling from a tree. John Conduitt, 

Newton's assistant at the royal mint and husband of Newton's niece, had this to say about the event when he wrote 

about Newton's life:  

If it was the same force, then a connection would exist between the way objects fell on Earth and the motion of the 

Moon around Earth, that is, its distance and orbital period. The orbital period we know--it is the lunar month, or the 

length of time between one "new moon" and the next. The distance was first estimated in ancient Greece. 

To calculate the force of gravity on the Moon, one must also know how much weaker it was at the Moon's distance. 

Newton showed that if gravity at a distance R was proportional to 1/R2 (varied like the "inverse square of the 

distance"), then indeed the acceleration g measured at the Earth's surface would correctly predict the orbital period T 

of the Moon. 

Newton went further and proposed that gravity was a universal force, and that the Sun's gravity was what held 

planets in their orbits. He was then able to show that Kepler's laws were a natural consequence of the "inverse 

squares law" and today all calculations of the orbits of planets and satellites follow in his footsteps. 

 Here we will retrace the calculation, which linked the gravity observed on Earth with the Moon's motion across the 

sky, two seemingly unrelated observations.   

Calculating the Moon's Motion 

We assume that the Moon's orbit is a circle, and that the Earth's pull is always directed towards the Earth's centre. 

Let RE be the average radius of the Earth (first estimated by Erathosthenes).  RE= 6 371 km 

Newton estimated that the distance R to the Moon is then about 60 times the Earth’s radius, 60 RE. If an apple of 

mass m on Earth is pulled by a force mg, then the pull on the same apple at the Moon's distance would be 602 = 3600 

times weaker and would equal;  F = mg/3600   (assume now that m represents the mass of the Moon and not the 

mass of an apple) 

If the Moon's orbit is a circle, since R = 60 RE its length is 2πR = 2π 60RE 

We define velocity as the distance travelled per unit time;    ╥▄■▫╬░◄◐ 
╓░▼◄╪▪╬▄

╣░□▄
 

Therefore, ╣░□▄ 
╓░▼◄╪▪╬▄

╥▄■▫╬░◄◐
         If Distance is the distance of one orbit then Time is the time taken for the moon to 

travel once around the Earth. 

 T =   2π 60RE /v  (Equation 1) 

We have an expression for the Time of one orbit but we don’t know the velocity v. 

In the year 1666 he retired again from Cambridge ... to his mother in Lincolnshire & while he was 

musing in a garden it came into his thought that the power of gravity (which brought an apple from a tree 

to the ground) was not limited to a certain distance from earth, but that this power must extend much 

further than was usually thought. Why not as high as the Moon thought he to himself and that if so, that 

must influence her motion & perhaps retain her in her orbit, whereupon he fell a-calculating what would 

be the effect of that superposition... 

Keesing, R.G., The History of Newton's apple tree, Contemporary Physics, 39, 377-91, 1998) 
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We can calculate the moon’s velocity, in its motion around the Earth thus; 

Newton estimated that the force of gravity at the moon’s distance was 1/3600 times weaker than at the Earth’s 

surface;  F = g/3600    and for an object in circular motion the corresponding Centripetal force =   

Therefore,    
ὺς

φπ2Ὁ
  Ὣ

σφππ
     or     ὺς   Ὣ φπ2Ὁ

σφππ
      or   ὺ       

 
  

 

We can now substitute for v in equation 1 to give;        4    ςʌ φπ2  
 

 

Putting in the values for Re and g we get T = 2354493 seconds 

And dividing by 86400 seconds per day we get     Ὕ   
  
 ςχȢςυ Ὠὥώί 

  

Conclusion: On the basis of correctly estimating the distance to the moon and applying an inverse square law to the 

force of gravity Newton (as we have just done above) determines the correct value for the lunar month. 

_________ 

Note: gravity is not what gives the Moon its velocity. Whatever velocity the Moon has was probably acquired when it 

was created. But gravity prevents the Moon from running away, and confines it to its orbit. 

 

The Formula for the Force of Gravity 

    Newton rightly proposed that a "universal" force of gravitation F existed between any two masses m and M, 
directed from each to the other, proportional to each of them and inversely proportional to the square of their 
separation distance r. In a formula. 

    ╕  
╖╜□

╡
 

Suppose M is the mass of the Earth, R its radius and m is the mass of some falling object near the Earth's surface. 
Then one may write 

F   =   m   GM/R2   =   m g   and from this we cancel small m from both sides to get; 

 g   =   GM/R2 

The capital G is known as the constant of universal gravitation. That is the number we need to know in order to 
calculate the gravitational attraction between, say, two spheres of 1 kilogram each. Unlike the attraction of the Earth, 
which has a huge mass M, such a force is quite small, and the number G is likewise very, very small. Measuring that 
small force in the lab is a delicate and difficult feat. 

    It took more than a century before it was first achieved. Only in 1796 did Newton's countryman Henry 
Cavendish actually measure such weak gravitational attraction, by noting the slight twist of a dumbbell suspended by 
a long thread, when on its weights was attracted by the gravity of heavy objects. His instrument ("torsion balance") is 
actually very similar to the one devised in France by Charles Augustin Coulomb to measure the distance dependence 
of magnetic and electric forces. The gravitational force is much weaker, however, making its direct observation much 

http://www.phy6.org/earthmag/mill_3.htm
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more challenging. A century later the Hungarian physicist Roland Eötvös greatly improved the accuracy of such 
measurements. 

Gravity in our Galaxy 
Gravity obviously extends much further than the Moon. Newton himself showed the inverse-square law also 

explained Kepler's laws--for instance, the 3rd law, by which the motion of planets slows down, the further they are 

from the Sun.  Namely, P2/R3 has the same value for all the planets in the solar system 

What about still larger distances? The solar system belongs to the Milky Way galaxy, a huge wheel-like swirl of stars 
with a radius around 100,000 light years. Being located in the wheel itself, we view it edge-on, so that the glow of its 
distant stars appears to us as a glowing ring circling the heavens, known since ancient times as the Milky Way. Many 
more distant galaxies are seen by telescopes, as far as one can see in any direction. Their light shows (by the "Doppler 
effect") that they are slowly rotating. 

    Gravity apparently holds galaxies together. At least our galaxy seems to have a huge black hole in its middle, a 
mass several million times that of our Sun, with gravity so intense that even light cannot escape it. Stars are much 
denser near the centre of our galaxy, and their rotation near their centre suggests Kepler's third law holds there, 
slower motion with increasing distance.  
 
    The rotation of galaxies away from their centres does not follow Kepler's 3rd law--indeed, outer fringes of galaxies 
seem to rotate almost uniformly. This observed fact has been attributed to invisible "dark matter" whose main 
attribute is mass and therefore, gravitational attraction. It does not seem to react to electromagnetic or nuclear 
forces, and scientists are still seeking more information about it and discover its nature. 

Calculating the Velocity of the Sun across the Milky Way Galaxy 

 

https://en.wikipedia.org/wiki/Lor%C3%A1nd_E%C3%B6tv%C3%B6s
http://www-istp.gsfc.nasa.gov/stargaze/Sblkhole.htm
http://www-istp.gsfc.nasa.gov/stargaze/Sun4Adop3.htm
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The velocity of the Earth’s motion in its orbit around the sun is easily calculated by balancing the centripetal force and 

the force of gravity; 

 

Ὂ άὥ ά  Ὃ
 
    where Ms is the mass of the sun and small m is the mass of the Earth 

 

Cancelling small m and R gives  ὺ  Ὃ         -----Eqn 1 

 

If we approximate Earth’s orbit to be near circular, the distance travelled in one year is ςpὙ.  Assuming a 

constant velocity during this period we get a new expression for velocity. ὺ  
 

 

 
p
      Where P is the period or time taken for one revolution around the sun. 

 

Squaring both sides gives;   ὺ   
p
    -----Eqn 2 

 

Substitute v2 from equation 1 for v2 in equation 2 we have     
p

Ὃ
ὓί

Ὑ
 

Rearranging for the Period gives;  ὖ  
p

 
         or     ὖ

p

 
  

 

Plugging all the number into the formula;  P =SQRT(4*PI()^2*(150*10^9)^3/(6.67384*10 -̂11*2*10^30))    

And doing the arithmetic gives,  P = 31,603,766 seconds      or   P = 1 year 
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Work can be defined as the application of a force over a distance. In other words, work is the use of a force to move an 

object a certain distance. The equation for work done is: 

W = Fs 

Where W is work done, F is force in newtons (N) and s is the distance the object moved in metres (m). Work is 
measured in joules (J), which is equivalent to one newton per metre. 

Work takes on many forms. It can be most easily seen when an object is moved from one place to another. Work is also 
taking place, however, when an object is being heated or changes state. In these cases, the work takes place on a 
particle level. As particles move more quickly, the object heats up and changes state. 

 Energy is the ability of an object to change the velocity, location, shape or state of another object. Simply put, in many 
cases, energy is the ability of an object to do work. Work could be thought of as a transfer of energy from one object to 
another. Like work, energy is measured in joules. There are two main types of mechanical energy: kinetic energy and 
potential energy. 

Kinetic energy is the energy found in objects that are in motion. Kinetic energy is often used to change the speed or 
shape of another object. A billiard ball being hit by another billiard ball, for example, shows kinetic energy being used to 
change the speed of another object. Another example of kinetic energy doing work is when two cars collide with one 
another and their shape is changed. 

Potential energy is energy that is stored within an object. There are many kinds of potential energy. The most common 
example is gravitational potential energy, which is the energy an object gains when it is raised higher in a 
gravitational field.  

Potential energy can be transformed into kinetic energy and vice versa. Imagine raising a ball into the air. As the ball is 
raised, it gains gravitational potential energy. If you were to let go of the ball, it would start to fall towards the ground. As 
it starts moving, the ball's potential energy becomes kinetic energy. Conversely, if the ball were to bounce up into the air 
after it hit the ground, its kinetic energy would be transformed into potential energy. 

 

The Potential Energy near the surface of the Earth is given by; PE = mgh, 

where h is the height of the object. 

As you raise an object further and further away from the surface gravity 

progressively diminishes and the Potential Energy progressively varies. 

Gravity is the only force acting and is given by; 

Ὂ   Newton’s Law of Universal Gravitation 

In order to move an object from the surface of the Earth we must supply 

a force equivalent to the force of gravity in the upward direction. The 

potential energy change as the object moves a small distance is equal to 

the work done (energy transfer) to achieve that change.    DPE = FDR, where 

DR is a small increase in height of the object.  

Now consider an infinite number of such small increases in height such that the object is moved very far away – 

infinitely far away. If we could add up all these small changes in potential energy we could determine to total 

potential energy change required to remove the object from Earth’s gravitational field. 

So,      DPE = FDR  
 zD2

   We can add all these DPE’s until R= ́using a computer algorithm, but even 

computers find infinite computations very time consuming and at times impractical due to the length of time 

required to do the computations.  
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Consider the force-separation curve shown; 

We can see from the curve that the force diminishes rapidly as R 

gets large. Re is the radius of the Earth and each of the thin 

rectangles F*DR represents the approximate area under the curve 

which is also the geometric representation of the work done to 

achieve a small incremental rise DR. We can use a computer to add 

up the area of these thin rectangles to compute the total energy 

for infinite separation of the object from the surface of the Earth. 

At best these computer techniques are only approximate, with 

better and better results achieved the thinner you make the 

rectangles. In reality, the best result would be achieved if the 

rectangles were infinitely thin, but this would take an infinite 

number of computations and therefore an infinite amount of time, 

even for computers. 

Fortunately, this type of computation has an exact mathematical solution, called Integral Calculus. 

The solution, to determine the work required to be done on an object to lift it from some arbitrary point R to 

infinitely away, R=́. 

ὡ ὨὖὉ ὖὉ  ὖὉ  ὊὨὙ 
Ὃὓά

Ὑ
ὨὙ  

 

Now, the integral of ᷿ ὨὙ      

 

          Therefore.    ὖὉ  ὖὉ   

 

 Now,  

 

Therefore, the Potential Energy at distance R from the 

centre of the gravitating body is given by;   

 

 

 

Question: How much energy does a brick have that falls from a three metre height onto your foot? 

Answer: Enough to hurt and cause significant damage to your small toe.  Specifically, 88 joules and it is 

moving at 7.7 metres per second when it hits!! 
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Question: We have a one ton (1000kg) comet tumbling around in outer space, with nothing to do, and for 

whatever reason it is perturbed and begins its long trip to Earth. What damage will it cause when it hits?  
The question is written in red because this object might be dangerous!! 

We need to calculate the energy this object has when it hits Earth. 

To determine the energy released by the comet when it hits the Earth we need to calculate the difference in potential 

energy between the final and initial conditions. 

Initially, assume the comet is infinitely far away and is potential energy is zero. 

Therefore, the potential energy when it hits the Earth is given by;      

Where G is the constant of Universal Gravitation = 6.67*10-11 

M is the mass of the Earth = 5.97*1024 kg,  m is the mass of the comet = 1000 kg 

And R is the distance of the comet from the centre of the Earth = 6371 km (6371000 m) 

ὖὉ  
Ȣ ᶻ ᶻȢ ᶻ ᶻ      

  = 62,501,805,054 joules = 62.5 x 109  Joules 

This is a lot of energy, but how does it compare with other events? 

 

If the comet were to originate 

from the Kuiper belt, rather 

than infinitely away, would its 

impact be larger or smaller? 

In this case we need to 

calculate the potential energy 

difference between the initial 

position and final positions. 

The Kuiper belt is 4 to 7 billion 

kilometres distant.  When one 

does the calculation the result 

turns out to be 62.5 Giga 

Joules 

At 1 decimal point accuracy, 

there is no difference in 

energy if the comet were to 

originate at infinity or at the 

Kuiper Belt. 

 

When an orbiting body like a planet, asteroid or comet is at its furthest point in its orbit (its aphelion), the body is 
high above the Sun’s surface where much of its energy is in the form of gravitational potential energy. As the body 
approaches the Sun, its distance falls and the difference in gravitational potential energy will be converted into 
kinetic energy. Hence an orbiting body will be travelling fastest at its perihelion (i.e. when it is closest to the Sun).  
The total mechanical energy of any orbiting body, is the sum of its kinetic energy (KE) and its gravitational potential 
energy (PE). 
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╜▄╬▐╪▪░╬╪■ ╔▪▄►▌◐ □○  
╖╜□

╡
 

 
Mass of Sun: 1.989x1030 
Mass of Earth: 5.97x1024 
 
The velocity of the Earth around the sun is 
continuously changing depending on its orbital 
position. It is fastest at perihelion and slowest at 
aphelion. 
 
At aphelion the Earth is travelling at 29.29 km/s 
How fast is the Earth travelling at perihelion? 
 
We know that the Earths total energy is conserved as it orbits the Sun. Therefore the energy at perihelion must be 
equal to the energy at aphelion. The Earth’s energy is the sum of its kinetic energy and its potential energy. 
 

ὉὲὩὶὫώ ὉὲὩὶὫώ 

 

 
ρ

ς
άὺ  

Ὃὓά

Ὑ
   
ρ

ς
άὺ  

Ὃὓά

Ὑ
 

 
 

Rearranging and solving for VPerihelion gives;    ὺ  ὺ  ςὋὓ   

Doing the math, gives VPerihelion = 30.287 km/s 

 
This is 1 kilometre per second difference in speed between the two far points in the orbit. A considerable speed 
difference. 
 
 

Angular momentum, like energy, is conserved and is defined as; 

 L = mvrSinq.  
 

For circular motion the angle q is 90 degrees and sin90=1, leaving 
L=mvr 
 
If we assume the Earth’s orbit to be circular (a good approximation 
for the Earth) the angular momentum at perihelion must equal the 
angular momentum at aphelion.  Lp = La 
 
Therefore,    □○▬╡▬  □○╪╡╪   

 
Where m is the mass of the Earth, 
 ὺ the velocity at perihelion and Ὑ  the perihelion distance 

 ὺ the velocity at aphelion and Ὑ  the aphelion distance 
 
In the above formula, m appears on both sides of the equation and therefore cancels out and rearranging for ὺ 

gives; ὺ  
○╪╡╪  

Ȣ ᶻ ᶻ

ᶻ
  = 30.286 km/s,    

 
This is an equivalent result to that obtained by the energy conservation approach above. 



Understanding Gravity                

Page 

| 14 

Because energy is conserved, the total energy at infinity must equal the total energy at impact. Therefore; 

 KE + PE = 0 

ρ

ς
άὺ  

Ὃὓά

Ὑ
   π 

 

ρ

ς
άὺ  

Ὃὓά

Ὑ
  

 

ὺ               or       ὺ        or       ○▄▼╬
╖╜

╡
  

 

And Vescape for the Earth is 11,200 m/s or 11.2 kilometres per second.  Give any object this much speed and it will 
never return to Earth.  Note: G is the Gravitational Constant, M is the mass of the Earth and R is the distance of the 
object from the centre of the Earth. In this case R is the Earth’s radius 6371 kilometres. 

 

This formula for escape speed compares in an interesting way to the formula for Orbital Speed. That is, the speed 

we must give an object to put it in orbit.   ○▫►╫░◄ 
╖╜

╡
  

 

Let’s derive ○▫►╫░◄╪■ ▼▬▄▄▀ to see how this comes about!! 

In order to move in a circular orbit or radius R at constant speed v, a satellite of mass m requires a centripetal force of 
□○

╡
 which will be supplied by the gravitational force  

╖╜□

╡
 , therefore; 

 

□○

╡
   
╖╜□

╡
 

 

Cancelling little m and making v the subject gives;     ○▫►╫░◄ 
╖╜

╡
  

This result tells us that the escape velocity is 1.4 (Ѝς) greater than the orbit speed. 
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Geosynchronous Orbit 
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BASIC CONSTANTS 
 

Mathematical Constants  

 

3.141592653589793  

e 2.718281828459045  

Physical Constants  

Speed of light (c)  299,792,458  m/s   

Constant of gravitation (G)  6.67259x10 -11 Nm 2/kg 2  

Universal gas constant (R)  8,314.4621  J/kmol -K  

Stefan -Boltzmann constant 
(s)  

5.670373x10 -8 W/m 2-K4  

Acceleration of gravity (g)  9.80665  m/s 2  

Standard atmosphere, sea 

level  
101,325  Pa  

Astronomical Constants  

Astronomical unit (AU)  149,597,870  km   

Light year (ly)  9.460530x10 12 km   

Parsec (pc)  3.261633  ly   

Sidereal year  365.256366  days   

Mass of Sun  1.9891x10 30 kg   

Radius of Sun  696,000  km   

Mass of Earth  5.9737x10 24 kg   

Radius of Earth  6378  km   

Earth oblateness  1/298     

Obliquity of the ecliptic, 
epoch 2000   

23.43  degrees   

Mean lunar distance  384,403  km   

Radius of  Moon  1,738  km   

Mass of Moon  7.348x10 22 kg   

Luminosity of Sun  3.839x10 26 W  

Solar constant, at 1 AU  1,366  W/m 2  

Mean free-fall acceleration at the Earth's surface  

Elementary charge,  

Electron mass,  

Proton mass,  

Neutron mass,  
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Formulae 
 

○  
╓░▼◄╪▪╬▄

╣░□▄
             ○  ╪◄        ▀  ╪◄ 

 

╪  
○

╡
       Acceleration for an object in circular motion 

 

╕  
╖╜□

╡
     Universal Gravitation 

 

╕  □▌        ╕  □╪      Newtons 2nd Law    

 

▌  
╖╜

╡
        Strength of gravitational acceleration 

 

  
╟

╡
▓  Kepler’s Third Law 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 


